
Random sequential adsorption of hard discs and squares: exact bounds for the covering

fraction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 3887

(http://iopscience.iop.org/0305-4470/28/14/010)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 03:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. &yr. A Math. Gen. 28 (1995) 3887-3900. Printed in the UK 

Random sequential adsorption of hard discs and squares: 
exact bounds for the covering fraction 

S Caser and H J Hilhorst 
Laboraroire de Physique Thhrique er Hautes Energiest, Batiment 211. Univenite de pads- 
Sud. 91405 Orsay W e &  France 

Received 23 February 1995 

Abstract. We investigate the random sequential adsorption of hard discs and hard aligned 
squares on10 a plane, by a new series expansion method that we previously devised for a 
lattice. The method yields sequences of increasing lower bounds for the timedependent covering 
fraction Q(t). These bounds have non-hivial limit values fort -, m, i.e. for the SaNIiUed state. 
Hypercubes and an analytic continuadon in rhe dimension D around D = 0 are also considered. 
Numerical results are given for the lowest orders in the series. 

1. Introduction 

Random sequential adsorption (RSA) is the physical process in which vapour particles of one 
substance are deposited sequentially onto a substrate of a different material. Once deposited 
a particle does not move and excludes its neighbourhoad from being occupied by the next 
particle. There is supposed to be a constant incident flux of particles onto the substrate, with 
attempts to deposit them taking place at random locations. No second layer pmicles are 
allowed and only attempts that do not violate the excluded surface condition are successful. 
As time increases, the substrate will therefore tend to a saturated state in which no more 
particles can be adsorbed. The primary quantity of physical interest is the covering fraction 
O(t)  as a function of time r, that is, the fraction of the substrate area covered by adsorbed 
particles. A recent review by Evans [l] describes the various theoretical models that have 
been studied to investigate the RSA process. Recent experimental techniques have been 
discussed by Ramsden [2]. 

Much of our knowledge about RSA comes from numerical simulations. Exact results (in 
two dimensions) are virtually non-existent. The best analytical estimates of 00) are based 
on the extrapolation of initial time expansions [3]. In this paper we describe an expansion 
method that provides rigorous lower bounds on O(t). The bounds have a non-trivial f --f bo 
l i t  and can be successively improved by the calculation of higher-order terms. Our 
expansion method is based on an idea first conceived as a new numerical algorithm for 
lattice RSA. Subsequently it was converted into an analytical expansion scheme and yielded 
exact bounds [4] for lattice RSA. In this paper we describe its implementation in continuous 
space, which differs considerably from its lattice version. The resuit is a systematic series of 
only positive terms that converges to O(r). We present the lowest-order terms for hard discs 
and hard squares. The numerical values of these lowest-order bounds still fall considerably 
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below the best estimates by other methods. They are of interest because they constitute 
exact results in a field where there are very few, and because of the potential of the method. 

In section 2 we describe our formalism for the RSA of hard discs of radius a.  In 
section 3 we describe how an increasing series can be obtained 'for @ ( t ) ,  with, as a special 
case, @(CO). The terms in the series can be classified as coming from diagrams with one, 
two, three, . . . 'participating' discs. In the end, an m-disc contibution can be expressed as 
an integral on the positions of m overlapping discs of radius 20, with an integrand that is 
a function of the different areas of overlap. Although .superficially reminiscent of a vinal 
expansion [3 ] ,  our method is distinctively different from the virial approach and cannot be 
simply related to it. In sections 4 and 5 we explore some further possibilities of the method. 
In section 4 we consider hard aligned squares in an arbitrary dimension D, and find the 
lowest-order bound for @(CO). The result suggests that, upon analytic continuation in D, 
the D = 0 result for the saturated state is exactly @(CO) = 1. In section 5 we therefore 
consider the dimension D = 0 + E and set up a double expansion, in E and in the number 
m of participating discs. The 2-disc term in the series for @(CO) calculated to order E and 
extrapolated to D = 1 and D = 2 can no longer be considered as a bound, but comes close 
to the simulation values. Section 6 contains our conclusions. 

S Casu and H J Hilhorst 

2. RSA of hard discs 

2.1. Definition of the process 

We consider the RSA of hard discs of radius a onto a perfectly flat substrate of area V ,  
subject to an incident flux of j discs per unit of surface and of time. Attempts to deposit 
a disc will be supposed to take place at regular time intervals At,  2At ,  3 A t , .  . . , N A t ,  . , . 
where A t  = (Vj)-'. Units will be chosen such that j = 1. We shall eventually be interested 
in the limit 

N + C O  V --f CO N A t  = N J V  t fixed (2.1) 

where t is the physical time, and shall want to study the configuration of adsorbed discs at 
time t .  Th_e time evolu$on up to time t is uniquely determined by the ordered list of spatial 
locations R I ,  R2, . . . , RN where the first N attempts (successful or not) of depositing a disc 
took place. Below we describe two algorithms for constructing the adsorbed configuration 
at time t given this list of 'attempt locations'. 

2.2. The usual algorithm 

In the usual algorithm for simulation of RSA, one first places a disc at &. Then, letting 
U successively take the valuzs 2.3, . . . , jV, one places a disc at R, if and only if none of 
the attempt locations & E ( R I ,  Rz, . . . , Rv-l}  _where a disc has previously been placed falls 
within an exclusion disc of radius 20 around R,: In this algorithm, the configuration of all 
discs placed after one bas considered R, represents the_physical configuration of adsorbed 
discs at time uAt = 5. In this way the list R I , .  . . , RN yields the time evolution of the 
physical configuration for all times 0 4 T < t .  We recall here this well known fact in order 
to contrast it with a different algorithm to be discussed now. 

2.3. The sweep algorirhm 
This is a different algorithm for deriving the configuration of adsorbed discs at time r 2 N A t  
from the list El, &, . . . , 2,. We do not advocate this algorithm as a serious alternative to 



Adsorption of hard discs and squares 3889 

the usual one for practical simulations. It is presented here because it provides the key idea 
for a new analytic approach.. It is close in spirit to the sweep algorithm that we described [4] 
for lattice RSA, but working in continuous space makes its implementatio? vefy different. 

The sweep algorithm goes as follows. The list of attempt locations R I ,  Rz, . . . , RN is 
gone through alternately with two kinds ( A  and B )  of sweeps that we denote IA, I B ,  ZA, 
28,  . . . . In type A sweeps, discs may be placed at attempt locations~ of the list, in type B 
sweeps the list is shortened by deletion of locations. Here is the precise definition. 

Sweep IA.  Place a disc at i,. For v p 2 , 3 ,  . ~ .  , N place a disc at the location 2" if and 
only if none of the attempt locations R I ,  . . . , R,-I, wheth$r or not a disc has been placed 
on i f ,  falls within an exclusion disc of radius 2a arou_nd R,. Therefore if a disc has been 
placed at 2" during sweep IA, an attempt location R, can fall within its exclusion disc 
only if U + 1 < j~ < N .  
Sweep IB.  All locations where discs have been placed during sweep l A ,  as well as all 
attempt locations that fall within their exclusion discs, are deleted from the list @ut the 
adsorbed discs remain in place). The order_ of the locations that stay in the list remains 

For n = 2.3, . . . the sweep nA has as its input the ordered list ir-'), @-'), . . . , RNn-l (n-1) . 
It is defined as follows. 
Sweep nA. Place a disc at E?-!). For U = 2 , 3 ,  . . . , Nn-l place a disc at RF-') if and 
only if none of thz attempt locations :?-I), . . . , i?F-y') fall within an exclusion disc of 
radius 2a around RF-'). 
Sweep nB. All locations where discs have been placed during sweep nA,  as well as all 
attempt locations that fall within their exclusion discs, are deleted from the list. The,order 
of the locations that stay in the list remains unchanged. This results in a shortened list 
@I,  it), . . . , 2:; with N. < N,-1 - 1. 

The algorithm stops when shortening leads to an empty list. On the basis of our 
experience with simulations we expect that typically thenumber of sweeps needed increases 
at most logarithmically with N and hence, at fixed time t ,  with the system size V .  

Every disc that is placed in a sweep of type A is necessarily also placed in the real 
adsorption process, because the condition on placing a disc in a type A sweep is more 
sbringent than in the real process. Conversely, every disc placed in the physical process 
will end up by being placed, for some n, in a type A sweep. Therefore at the end of the 
algorithm the configuration of placed discs represents the physical configuration of adsorbed 
discs at time f = N / V .  One cannot attach a direct physical meaning to the intermediate 
configurations~that prevail after the sweeps IA,  2A, 3 A , .  . . . But since the covering fraction 
O,(t) after sweep nA is an increasing function of n, one has that Ol(t), Oz(z). e&), . . . 
forms an increasing sequence of lower bounds converging to the physical covering fraction 
@ ( t )  at time t .  At the basis of the exact bounds presented in this work are this observation 
and the fact that each e,&) can be calculated, in principle, at the cost of a finite amount 
of effort. 

unchanged. This results in a shortened list RF), 2;). . . . , RHl -(I) with N I  < N - 1. - 
.. 

3. Increasing series for the covering fraction O(t) of hard discs 

3.1; The basic series 

Each time an attempt to place a disc is successful, the covering fraction increases by nu2/ V .  
The total covering fraction @ ( t )  at time t is therefore equal to 
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where A, = 1 (A, = 0) if the attempt to adsorb a disc at i, is successful (unsuccessful); 
we have indicated that this quantity only depends on the first v elements of the full l i t  
R I ,  . . . ,-RN, and the overbar represents the average over all attempt lists, obtainable by 
letting R I ,  Rz, . . . , & vary independently through the surface V. 

- - 
We now make use of the sweep algorithm to write 

where A t ) ( & ,  . . . , &) = 1 (or = 0) if an adsorption in i?, takes place (or does not take 
place) during sweep nA. Upon combining (3.1) and (3.2) and rendering the average explicit 
we get 

m 

@ ( t )  =CO&) (3.3) 
*=l 

where 

with 

(3.4) 

(3.5) 

the probability that the sweep n A  of the sweep algorithm leads to placing a disc at the uth 
attempt location. The dependence on time t in the LHS of (3.4) is a consequence only of the 
summation in the RHS ending at the upper l i i i t  N = Vt. In all of the above expressions 
the large-system limit N -+ CO, V -+ CO with N / V  = t fixed should be taken. It will 
appear that in this limit the probability pn," only depends on the ratio r = u/V, of which 
it is a slowly varying function. Anticipating upon this result and setting 

pn." = pn(r) (U, V -+ CO with u/V = r fixed) (3.6) 

we can therefore write (3.4) as 

@,(t)  =nu2 dsp,(r). (3.7) i 0 

Equation (3.3) is the basic series, and we shall now see how the successive term can be 
evaluated. 
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3.2. The first term 

The n = 1 term in (3.3) is a sum on U of the probability pi. .  that d y n g  thcsweep 1A 
a disc is placed at the uth attempt location. This will happen if R I ,  R2, . . . , R,-1 are all 
outside of the exclusion disc of radius 2a around R,.  The expression for this probability, 
given by (3.5), is therefore easy to evaluate and we find 

or equivalently, in the large-system limit, 

(3.86) 

Combined with (3.7) and (3.3) this gives straightforwardly the time-dependent lower bound 

4z2r p l ( r )  =e-  . 

For t + 00 this gives as a special case the lower bound 

O(m) > + (3.10) 

for the covering fraction in the saturated state. This lower bound is simple to interpret 
geometrically: it is the ratio of the area of a disc to the area of its exclusion disc. In spite of 
the elementary nature of this calculation, equation (3.9) is to our knowledge the first exact 
positive lower bound for O(t)  ever presented. 

3.3. Higher terms. Expansion in the number of parficipating discs 

Let us consider &(t) in (3.3). Its tabulation requires the determination of the probability 
p ~ . "  that at the vth attempt location R, a disc is placed during the sweep 2A. For this to 
happen, a sel {R,,} of one or more attempt locations with index U' e U in the exclusion 
+sc around R, must have prevented this disc from being placed during sweep 1 A, and each 
R,, must have been eliminated from the Qst by, also behg in the exclusion disc of at least 
one disc placed during sweep 1A. Let { R F , ,  R,,,; . . , R$,] be the full set of discs placed 
during sweep 1A and .having one or more of the R,, in their exclusion discs. An example 
of a diagram representing the situation with s = 3 is depicted in figure 1. We shall say that 
this is a diagram of four participating (= actually placed) discs. 

Before proceeding further we still make the following observations about this diagam. 
Fpt, the s discs of type 1A may not h a y  all been needed to eliminate the set of points 
{Rut} .  For example, in figure 1, the disc at R,, is superfluous. Nevertheless, for each attempt 
location d, filled duriig sweep 2 A ,  the set of participating discs is uniquely _defined. Second, 
an attempt location Ru, in the intersection of the exclusion discs around Rp, and R, must 
have its index U' between pi and U. 

The probability p ~ , ~  can be decomposed as a sum of contributions pg'  coming from 
diagrams with m participating discs. More generally we shall write 

(3.11) 
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Figure 1. A diagram with four participating discs contributing 
lo 0 2 .  whereas the discs have radius a, the circles shown 
correspond 1o.their excluded area and have radius 2a 

Geometric constraints on the way to place the discs will render the number of terms in 
the sum on m finite. In particular, pl." = pi!: (there is only one participating disc in the 
lowest-order approximation). 

By substituting (3.11) in (3.4) and (3.3) one gets 

or, equivalently 

(3.12) 

(3.13) 

where 

ra2 @ F ) ( t ) = T c p z J  ( m > n > l )  (3.14) 

is the contribution of m participating discs to On(?). In particular, 0, = e!'). In the 
large-system limit equation (3.14) becomes 

"A 

(3.15) 

which is the contribution to (3.7) from m participating discs. 
Equation (3.13) is a double expansion of @(I), in the number m of participating discs 

and in the index n of the sweep algorithm. All terms in this expaision are positive. Hence 
the sum of any finite number of them gives a lower bound that increases when terms are 
added. Obviously there are many ways to rearrange the terms. In the calculations that follow 
we have found it convenient to classify the contributions to the lower bound according to 
the number of participating discs. 
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Figure 2. The simplest diagram contributing to 02. with two participating discs. 
U 

3.4. Two-disc contribution 

There is a two-disc contribution only to Oz(t). The two-dsc contribution @ ( t )  requires 
the calculation of p f ; ,  which can be represented by the diagram of figure 2, in which the 
relevant areas are labelled SO, Sol and SI. This diagram represents the integral ,Of (3.5) for 
the case n = 2, restricted to two participating discs, of which one is placed in R,, and oFe 
in another arbitrary location R,, with the index p1 to be summed over. The points RI, 
Rz, . . . , I?, contributing to the integral fall into two different sets: 

Set 0. The points with an index between 1 and pl - 1 are excluded from the whole area 
& + & I  + SI. The integration on these points gives a factor [I - (& +SO, + S,)/v],>-'. 

Ser I .  The remaining points, E,,+I to I?"-], must all lie outside SO, with at least one 
of them in the intersection Sol (for the 1 B step of the sweep algorithm to be effective). 
Therefore the set I cannot be empty. The corresponding factor in pz,", as given by the 
integration in (3 .3,  can be obtained by excluding all points from SO, and subtracting from 
this the contribution with all points excluded from both SO and Sol. This yields the factor 

.. 

(1 - so/v)"-'-'l -[1-(so+sol)/vl"-'-~~. 
We therefore get 

"-2 so + so1 +"),'-I 

V 

[(1- $)"-I-".- ( l - -  so;so,)"-~'] (3.16) 

In the large-system limit, we set 5 = v / V  and U = p l / V .  _The sum on p~ becomes an 
integral on U and can be interchanged with the integration on R,, . Since the integrand only 
depends on R E R,, - I?, (and, in fact, only on R) we get 

. . -  

Since SO = SI = 4na2 - SO,, the integrand can be expressed as a function of SO, only; 
however, in (3.17), we wanted to display the overall factor explicitly outside the brackets. 
This factor takes into account the excluded areas for the sets 0 and I ,  as explained above. 
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A factor of this type, suitably generalized, will appear in each contributing term in the 
large-system limit. 

S Caser and H J Hilhorst 

Combining (3.17) with (3.15), we find 

(3.18) 

in which Sol is a function of R. Fort + CO this gives the contribution 

(3.19~) 

(3.19b) 

to the covering fraction @(CO) in the saturated state, to be added to the lower bound of 
(3.10). 

For the purpose of analogy with what follows we remark that if one is only interested 
in the limit t -+ M, one may consider (3.15) directly with n = m = 2 and r = CO, and 
change variables to ug = c, u1 = r - U ,  where uo and u1 correspond to the sets 0 and I, 
respectively, and both run from 0 to CO. Thus, 

which can readily be integrated to yield (3.19). 
By expressing R and So1 as functions of the angle q5 under which the chord common 

to the two-disc perimeters is seen from the centre of either disc, one can write (3.19b) in 
the form 

(3.21) 

The disc radius a has dropped out of this result, as it should. Numerical evaluation of (3.21) 
gives an extra contribution of 0.078 to @(CO). The lower bound for @(m) coming from 
up to two participating discs, as given by (3.21) and (3.10). is therefore equal to 0.328, still 
far away from the value of 0.547 obdned by simulation [11. 

To further illustrate the method, in the following section we consider the case of three 
discs. Since no new numbers are given, the reader with a purely numerical interest may 
turn directly to section 4. 

3.5. Three-disc contribution 

The expansion (3.13) contains two three-disc terms, @;) and Or), that contribute to 0 2  

and Q3, respectively. We shall consider them successively. The contribution @:) requires 
the calculation of p::, which involves three participating discs of which one is placed in 
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and the two other ones in arbitrary locations E,, and E,, with the indices pl and p2 to 
be summed over. This is shown in figure 3. The areas and So12 Gill be zero for certain 
configurations of the discs. We shall write the expression for @i3) in the large-system l i t  
directly. We set U = r / V ,  a, = p l / V  and a2 = p 2 / V ,  with 0 c a1 e a2 e r ,  and let N 
and V go to 00 with N /  V = f as before. This defines three sets of indices, which we label 
0, Z, and ZZ. We introduce corresponding time difference variables 

U0 = a1 UI =a2-a1 112 = 5 - a2. (3.22) 

Although the full advantage of the variables U only appears in the f -+ M limit when they 
vary independently from 0 to CO, they also make the finite t expressions somewhat easier 
to handle. 

The first set of points, 0, is excluded from the union of the three discs of figure 3, the 
second set, Z, from the dark gray and dotted areas, and the third set, 11, from the dotted 
area only. This gives an overall exclusion factor of 

ql(uo, U l r  u2) ~ e-suoe-(s-s~-so~)ul e -sou2 (3.23) 

where S = SO + SI + S2 + SO, + So2 + Slz + S012. We should now multiply this by an 
extra factor q2 which takes into account the supplementary conditions to be obeyed by the 
points in sets Z and ZI. As we can see from the previous example, the appearance of these 
conditions as a factor is characteristic of the large-system limit. These conditions can be 
expressed in terms of the following three propositions. 

(i) There is at least one point of Z Z  in SOIZ. 
(ii) There is at least one point of Z,  or one point of Z Z ,  in Sol. 
(iii)There is at least one point of Z Z  in S Q ~ .  

A careful examination of the different possibilities leading to @?) shows that the 
correction factor q2 we are looking for is given by the probability p that either (Y is true, 
or B and y are true, that is by 

q2 = P(U U (B n V I )  = PW + P ( B  n V )  - P(W n B n V )  

= P(@ + P(B)P(Y) - P ( 4 P ( B ) P ( Y ) .  (3.24) 

Indeed, in the large-system limit, one can easily convince oneself that the three propositions 
imply independent constraints on the points of the sets. This i s  the reason for the 
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factorization in the second equality (3.24). It i s  straightforward to write the corresponding 
probabilities: 

p(or)  = 1 - e-so!2ul 

Hence, 

q2(u1, uz) = 1 + e-so,zuz(e-So,(ul+uz)-Smur - e-so,(ul+u2) - e-scQu, 1. (3.26) 

All the areas So,. . . , So12 appearing in (3.23) .. and_(3.26)-can easily - expressed - explicitly 
as functions of the two relative positions RI = R,, - R, and Rz R,, - R,. We now 
multiply (3.26) by (3.23) and integrate on a, and &. The sums on and p2 become 
integrals on UI and UZ, respectively, and yield pi:!. The quantity 0;’ is obtained, as shown 
in (3.14), by a sum on U which becomes an integral on f ,  so that finally 

S Caser and H J Hilhorrt 

p(,y) = 1 - e-sn~(~~+~Z) ( y )  = 1 - e-huz. (3.25) 

be .. 

where UO, U I  and u2 are given in terms of U I ,  UZ, r by (3.22). The corresponding contribution 
to the covering fraction in the saturated state is 

& 
where the outer space integral is simply 12nR1 dR1, while the limits of the inner integral 

We conclude this section by considering the other threedisc term, namely OF’, in the 
large-system limit. The relevant diagram is shown in figure 4. As in the previous diagram, 

depend on RI,. 2.7 

Figure 4. The simplest contribution to El>, with three 
pddpating discs. participating squarez. 

Figure 5. The simplest contribution to 02, with two 
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some of the areas, namely Sol and Solz, may not exist for all configurations,of the discs. 
All areas and sets of variables are defined as before. The set 0 is excluded from the union 
of the three discs, the set I from the dark gray and dotted areas, the set II from the dotted 
area This gives the overall exclusion factor 

ql(uo, U l ,  u2) = e-s",e-(s,+s,+s,)~~e-s~"~ . (3.29) 

The extra factor q2 comes from the consideration of the following two propositions: 

(i) There is at least one point of I in SIZ + So12. 
(ii) There is at least one point of II in SOZ. 

These propositions must be true simultaneously.  hence^ 

q2(u1, u2)  = P ( O ~  n B )  = P(WB) (3.30) 

where the factorization in the second equality is exact even for a finite system due to the 
independence of the variables in sets I and II. The corresponding probabilities can readily 
be written down as 

p(oc) = 1 - e-(sn+soL2)ul p ( p )  = 1 - e-'uu2 . (3.31) 

Multiplying and integrating as before again yields for Oy) the formulae (3.27) and (3.28). 
 but with q1 and q2 now given by (3.29)-(3.31). 

,The integrations on the variables U can be performed, to yield 

(3.32) 

With these explicit expressions for Of) and 0:) we have completed our discussion of the 
three-disc contributions. 

Here we shall not pursue the case of more than three participating discs. It is obvious 
that the complexity of the calculation increases quickly with the number of participating 
discs. Considering only the second step of the sweep algorithm (n = 2), there may be 
as many as m = 13 partici ating discs. As already obvious from figures 3 and 4 and the 
calculation of of) and e!', the number of overlapping areas and their dependence on the 
positions of the discs constitute the main difficulty in evaluating the integrals. (Remember, 
however, that each contribution to (3.13) raises the value of the lower bound, and that the 
latter is exact.) 

4. RSA of hard aligned hypercubes 

The discussion of sections 2 and 3 concerns the RSA of hard discs in the plane. Obviously 
analogous considerations hold for discs in general dimension D ('hyperdiscs'), and for 
hypercubes. In this section we shall be interested in the RSA of hard aligned hypercubes of 
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side a in dimension D. Clearly in the algorithm of sections 2 and 3 the exclusion disc of 
radius 2u should be replaced by an exclusion hypercube of side 20, and the disc surface 
xu2, wherever it occurs, by the hypercube volume uD. Thus, the one-hypercube lower 
bound @(t) for @(t) is still given by 

S Cuser and H J Hilhorst 

ol(t) = ~ ~ ( 1  -e- W r ) .  (4.1) 

We next note that the equations (3.18), (3.19a), (3.27), (3.28) and (3.32) that represent the 
two- and three-disc contributions to the lower bounds for O(t) and @(CO) hold similarly 
for hypercubes, at the condition of taking for SO, SI, Sol, . . . not the areas of exclusion discs 
and their intersections, but volumes of exclusion hypercubes and their intersections. The 
hypercube equivalent of (3.19~) is 

(4.2) 

where Sol is the volume-of the intersection of two hypercubes of side 2u whose centres 
are in the origin and in R, and the integration is on the volume between the hypercubes of 
sides 2u and 4u centred in the origin. We discuss three special dimensions. 

(i) In dimension D = 2 equation (4.2) reduces to 

(4.3) 

Numerical evaluation of (4.3) yields 0.0845 and hence a value of 0.3345 for the two-square 
lower bound on @(CO). The simulation value is 0.562 111. 

(ii) In one dimension, hypercubes (as well as hyperdiscs) reduce to hard rods. The 
two-rod lower bound to @(CO) is also easily computed from (4.2): 

with Sol = 2u - x .  This gives (independently of a) 

Ol(W)+@f'(W)= $+210g3-310g2 

which is approximately 0.6178, to be compared with the exact result 0.7476 [l]. 

(4.4) 

(4.5) 

5. Expansion of the participating disc and hypercube series around dimension D = 0 

5.1. The method 

The onehypercube lower bound in D dimensions, equation (4.1). shows that @1(00) goes 
to 1 as D goes to zero. This fact suggests that we try an expansion of 0 in powers of 
D = E .  If the order in E increased with the number of participating discs (cubes), this would 
provide us with a justification for retaining only the first few terms in the series (3.13) (in 
low dimensions at least). Below we shall present the contribution to the order E coming 
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from two participating discs. We think this calculation is interesting even if we cannot be 
sure that three and more participating discs will not also contribute to order E .  

Consider first the case of discs. Equation (3.19~) can be generalized to D dimensions 
as 

The integration measure dDR has been kit ten out explicitly by using the distance r between 
the disc cenmes (divided by 2a), and KO is the volume of the unit sphere in D dimensions: 

5’01, as before, is the intersection volume (in D dimensions), 

(5.3) 
J 

‘12 

Expanding 01 = 1 / z D  and 0: of (5.1) above (together with (5.2) and (5.3)) in D = E gives 

2 where ~ B ( r )  = ;arccos f. 
Numerical evaluation of the integral yields 

Ql(00) + Or’(00) = 1 - 0 . 2 0 5 ~ .  (5.5) 

This equals 0.795 at E = 1, whereas the exact result in one dimension is 0.7476; and 0.590 
at E = 2 (to be compared with the simulation result in two dimensions, Q = 0.547: see 
[I]). 

5.2. Hypercubes 

We start from (4.2) and write it as 

where 2 0  is the number of faces of a cube. The intersection volume for xi 
1, ..., D is 

0, i = 

sol = (2  - q ) ( Z  - x2) . . . (2 - X D )  . (5.7) 
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When looking for the E contribution, all the exponents D in (5.6) may be set equal to zero. 
One can then write the integrand as 

S Caser and H J Hilhorst 

Each term in the sum can now be integrated to give 

or, by numerical evaluation 

@,(CO) + 0, (2) (CO) = 1 - 0.3326. (5.10) 

At E = 1 this equals 0.668 (exact value at D = 1 is 0.7476), and 0.336 at 6 = 2 (simulation 
result: 0.562 [ 11). 

Except for cubes at E = 2, we see that our approximation (first order in E ,  plus a 
maximum of two participating discs or cubes) is surprisingly good. 

6. Conclusion 

Estimates of the covering fraction @(CO) in the saturated state of a random sequential 
adsorption process have so far been based either on numerical simulation or on the judicious 
extrapolation of an initial-time expansion. Here we have presented a method that gives exact 
lower bounds for @(CO), and, more generally, for @(r). The method is an adaptation from 
previous work 141 on lattice RSA, but takes a very different form for the continuum problems 
considered here. The numerical values of the lower-order bounds calculated here still fall 
well below the estimates based on simulation or initial-time extrapolation 131. The novelty 
is that they are the first rigorous results and that the method to obtain them is general enough 
to be applicable to RSA problems of arbitrary type. Future research will be concerned, we 
think, on the one hand with devising more efficient ways to calculate higher-order terms 
within the scheme presented here, and on the other hand with exploiting further the flexibility 
of the basic idea. 
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